Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Nesterov-based alternating optimization for nonnegative tensor factorization: algorithm and parallel implementation

Liavas Athanasios, Kostoulas Georgios, Lourakis Georgios, Huang Kejun, Sidiropoulos Nikolaos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/2D05F606-529A-4203-A0BB-2E97F3A568AD
Έτος 2018
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά A.P. Liavas, G. Kostoulas, G. Lourakis, K. Huang and N.D. Sidiropoulos, "Nesterov-based alternating optimization for nonnegative tensor factorization: algorithm and parallel implementation," IEEE Trans. Signal Process., vol. 66, no. 4, pp. 944-953, Feb. 2018. doi: 10.1109/TSP.2017.2777399 https://doi.org/10.1109/TSP.2017.2777399
Εμφανίζεται στις Συλλογές

Περίληψη

We consider the problem of nonnegative tensor factorization. Our aim is to derive an efficient algorithm that is also suitable for parallel implementation. We adopt the alternating optimization framework and solve each matrix nonnegative least-squares problem via a Nesterov-Type algorithm for strongly convex problems. We describe a parallel implementation of the algorithm and measure the attained speedup in a multicore computing environment. It turns out that the derived algorithm is a competitive candidate for the solution of very large-scale dense nonnegative tensor factorization problems.

Υπηρεσίες

Στατιστικά