Marios Mavrikis, "Computational study of imaging techniques based on elastic wave reversibility", Diploma Work, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2019
https://doi.org/10.26233/heallink.tuc.83287
In recent years, control and monitoring of dynamic system operation is a common process. In this paper, we deal with the implementation of structural integrity monitoring (Structural Health Monitoring) and graphical stamping of excitation and damage points. Through these processes, we are able to detect sources of excitation or possible malfunction (due to spoilage or wear) on the construction. In addition, we deal with the possibility of spatially locating excitation and/or failure points. The stimulation of the system as well as the collection of response data can be done using piezoelectric ceramic materials (PZT) which will synthesize sensor/stimulator devices. Signal-to-Noise Ratio also studied in this work and the main aim is the foundation of the optimal receivers/stimulators set which should use on the structure to reduce the influence of the “ghosts”. The systems we employ are mainly frame constructions. The approach we follow is purely computational, using the finite element method to solve dynamic problems in the field of time. To sum up, this work combines a variety of scientific areas, such as Mechanics, Structural Dynamics, Computational Mechanics, Applied Mathematics and Programming.