Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Reconstructing subcortical and cortical somatosensory activity via the RAMUS inverse source analysis technique using median nerve SEP data

Rezaei Atena, Lahtinen Joonas, Neugebauer Frank, Antonakakis Marios, Piastra, Maria Carla 1988-, Koulouri Alexandra, Wolters Carsten H., Pursiainen, Sampsa

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/D6A35CC5-068F-4C00-850F-3DA651E65564
Έτος 2021
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά A. Rezaei, J. Lahtinen, F. Neugebauer, M. Antonakakis, M. C. Piastra, A. Koulouri, C. H. Wolters, and S. Pursiainen, "Reconstructing subcortical and cortical somatosensory activity via the RAMUS inverse source analysis technique using median nerve SEP data," NeuroImage, vol. 245, Dec. 2021. doi: 10.1016/j.neuroimage.2021.118726 https://doi.org/10.1016/j.neuroimage.2021.118726
Εμφανίζεται στις Συλλογές

Περίληψη

This study concerns reconstructing brain activity at various depths based on non-invasive EEG (electroencephalography) scalp measurements. We aimed at demonstrating the potential of the RAMUS (randomized multiresolution scanning) technique in localizing weakly distinguishable far-field sources in combination with coinciding cortical activity. As we have shown earlier theoretically and through simulations, RAMUS is a novel mathematical method that by employing the multigrid concept, allows marginalizing noise and depth bias effects and thus enables the recovery of both cortical and subcortical brain activity. To show this capability with experimental data, we examined the 14–30 ms post-stimulus somatosensory evoked potential (SEP) responses of human median nerve stimulation in three healthy adult subjects. We aim at reconstructing the different response components by evaluating a RAMUS-based estimate for the primary current density in the nervous tissue. We present source reconstructions obtained with RAMUS and compare them with the literature knowledge of the SEP components and the outcome of the unit-noise gain beamformer (UGNB) and standardized low-resolution brain electromagnetic tomography (sLORETA). We also analyzed the effect of the iterative alternating sequential technique, the optimization technique of RAMUS, compared to the classical minimum norm estimation (MNE) technique. Matching with our previous numerical studies, the current results suggest that RAMUS could have the potential to enhance the detection of simultaneous deep and cortical components and the distinction between the evoked sulcal and gyral activity.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά