URI | http://purl.tuc.gr/dl/dias/E9EF9A8E-437E-4E99-B4A2-E8028F5DC469 | - |
Αναγνωριστικό | https://doi.org/10.1103/PhysRevResearch.3.043027 | - |
Αναγνωριστικό | https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.043027 | - |
Γλώσσα | en | - |
Μέγεθος | 12 pages | en |
Τίτλος | Gradient catastrophe of nonlinear photonic valley-Hall edge pulses | en |
Δημιουργός | Smirnova Daria | en |
Δημιουργός | Smirnov Lev | en |
Δημιουργός | Smolina Ekaterina O. | en |
Δημιουργός | Angelakis Dimitrios | en |
Δημιουργός | Αγγελακης Δημητριος | el |
Δημιουργός | Leykam Daniel | en |
Εκδότης | American Physical Society | en |
Περίληψη | We derive nonlinear wave equations describing the propagation of slowly varying wave packets formed by topological valley-Hall edge states. We show that edge pulses break up even in the absence of spatial dispersion due to nonlinear self-steepening. Self-steepening leads to the previously unattended effect of a gradient catastrophe, which develops in a finite time determined by the ratio between the pulse's nonlinear frequency shift and the size of the topological band gap. Taking the weak spatial dispersion into account results in the formation of stable edge quasisolitons. Our findings are generic to systems governed by Dirac-like Hamiltonians and validated by numerical modeling of pulse propagation along a valley-Hall domain wall in staggered honeycomb waveguide lattices with Kerr nonlinearity. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2023-04-06 | - |
Ημερομηνία Δημοσίευσης | 2021 | - |
Θεματική Κατηγορία | Nonlinear optics | en |
Θεματική Κατηγορία | Photorefractive & Kerr effects | en |
Θεματική Κατηγορία | Topological effects in photonic systems | en |
Θεματική Κατηγορία | Waveguide arrays | en |
Βιβλιογραφική Αναφορά | D. A. Smirnova, L. A. Smirnov, E. O. Smolina, D. G. Angelakis and D. Leykam, “Gradient catastrophe of nonlinear photonic valley-Hall edge pulses,” Phys. Rev. Res., vol. 3, no. 4, Oct. 2021, doi: 10.1103/physrevresearch.3.043027. | en |