Το έργο με τίτλο A teaching–learning-based optimization algorithm for the environmental prize-collecting vehicle routing problem από τον/τους δημιουργό/ούς Trachanatzi Dimitra, Rigakis Manousos, Marinaki Magdalini, Marinakis Ioannis διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
D. Trachanatzi, M. Rigakis, M. Marinaki and Y. Marinakis, “A teaching–learning-based optimization algorithm for the environmental prize-collecting vehicle routing problem,” Energy Syst., Aug. 2021, doi: 10.1007/s12667-021-00477-1.
https://doi.org/10.1007/s12667-021-00477-1
The present research proposes a new Vehicle Routing Problem (VRP) variant, the Environmental Prize-Collecting Vehicle Routing Problem (E-PCVRP). According to the original PCVRP formulation, the scope of the problem is to maximize the total collected prize from the visited nodes and simultaneously minimize the fixed vehicle-utilization cost and the variable cost. In the E-PCVRP formulation, the variable cost is not solely expressed as a vehicle-covered distance but as a load-distance function for CO2 emissions minimization. The Teaching–Learning-Based Optimization (TLBO) algorithm is selected as the solution approach. However, TLBO is designed to address continuous optimization problems, while the solution of the E-PCVRP requires a discrete-numbered representation. Thus, a heuristic encoding/decoding technique is proposed to map the solution in a continuous domain, i.e., the Cartesian space, and transform it back to the original form after applying the learning mechanisms, utilizing the Euclidean Distance. The encoding/decoding process is denoted as CRE, and it has been incorporated into the standard TLBO algorithmic scheme, and as such, the proposed TLBO-CRE algorithmic solution approach emerges. The effectiveness of the TLBO-CRE is demonstrated over computational experiments and statistical analysis in comparison to the performance of other bio-inspired algorithms and a mathematical solver.