Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Compensation of input-dependent hydraulic input delay for a model of a microfluidic process under Zweifach-Fung effect

Bekiaris-Liberis, Nikolaos, Bresch-Pietri, Delphine, 1986-, Petit, Nicolas

Full record


URI: http://purl.tuc.gr/dl/dias/8A3511F2-89F3-4B66-9DE8-AA27F0BD1372
Year 2024
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation N. Bekiaris-Liberis, D. Bresch-Pietri, and N. Petit, "Compensation of input-dependent hydraulic input delay for a model of a microfluidic process under Zweifach-Fung effect," Automatica, 2023, doi: 10.1016/j.automatica.2023.111428. https://doi.org/10.1016/j.automatica.2023.111428
Appears in Collections

Summary

We consider a model of a microfluidic process under Zweifach-Fung effect, which gives rise to a second-order nonlinear, non-affine system with control input that affects the plant both without delay and with an input-dependent delay defined implicitly through an integral of the past input values (that arises from a transport process with transport speed being the control input itself). We construct a predictor-feedback control law that exponentially stabilizes the output to a desired reference point. This is the first time that a predictor-feedback design is constructed that achieves complete input delay compensation for such a type of input delay and despite that control input affects the plant also without delay. This is attributed to the particular structure of the nonlinear system considered, which allows to deriving an implementable formula for the predictor state at the proper prediction horizon. We then identify a class of nonlinear systems with input-dependent input delay of hydraulic type for which complete delay compensation, through construction of an exact predictor state, is achievable.

Available Files

Services

Statistics