Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Persistent homology analysis of a generalized Aubry-André-Harper model

He Yu, Xia Shiqi, Angelakis Dimitrios, Song Daohong, Chen Zhigang, Leykam Daniel

Full record


URI: http://purl.tuc.gr/dl/dias/6EEC4123-F14E-49B5-82C7-D5909C981D17
Year 2022
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation Y. He, S. Xia, D. G. Angelakis, D. Song, Z. Chen and D. Leykam, “Persistent homology analysis of a generalized Aubry-André-Harper model,” Phys. Rev. B, vol. 106, no. 5, Aug. 2022, doi: 10.1103/physrevb.106.054210. https://doi.org/10.1103/PhysRevB.106.054210
Appears in Collections

Summary

Observing critical phases in lattice models is challenging due to the need to analyze the finite time or size scaling of observables. We study how the computational topology technique of persistent homology can be used to characterize phases of a generalized Aubry-André-Harper model. The persistent entropy and mean squared lifetime of features obtained using persistent homology behave similarly to conventional measures (Shannon entropy and inverse participation ratio) and can distinguish localized, extended, and critical phases. However, we find that the persistent entropy also clearly distinguishes ordered from disordered regimes of the model. The persistent homology approach can be applied to both the energy eigenstates and the wave packet propagation dynamics.

Services

Statistics