Το work with title Persistent homology analysis of a generalized Aubry-André-Harper model by He Yu, Xia Shiqi, Angelakis Dimitrios, Song Daohong, Chen Zhigang, Leykam Daniel is licensed under Creative Commons Attribution 4.0 International
Bibliographic Citation
Y. He, S. Xia, D. G. Angelakis, D. Song, Z. Chen and D. Leykam, “Persistent homology analysis of a generalized Aubry-André-Harper model,” Phys. Rev. B, vol. 106, no. 5, Aug. 2022, doi: 10.1103/physrevb.106.054210.
https://doi.org/10.1103/PhysRevB.106.054210
Observing critical phases in lattice models is challenging due to the need to analyze the finite time or size scaling of observables. We study how the computational topology technique of persistent homology can be used to characterize phases of a generalized Aubry-André-Harper model. The persistent entropy and mean squared lifetime of features obtained using persistent homology behave similarly to conventional measures (Shannon entropy and inverse participation ratio) and can distinguish localized, extended, and critical phases. However, we find that the persistent entropy also clearly distinguishes ordered from disordered regimes of the model. The persistent homology approach can be applied to both the energy eigenstates and the wave packet propagation dynamics.