Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Improving performance of a nonlinear absorber applied to a variable length pendulum using surrogate optimization

Gaidai Oleg, Wu Yu, Yegorov Ivan, Alevras Panagiotis, Wang Junlei, Yurchenko Daniil

Full record


URI: http://purl.tuc.gr/dl/dias/2C74F4AB-B7E2-433C-981E-65E2C75F0AAA
Year 2024
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation O. Gaidai, Y. Wu, I. Yegorov, P. Alevras, J. Wang and D. Yurchenko, “Improving performance of a nonlinear absorber applied to a variable length pendulum using surrogate optimization,” J. Vib. Control, vol. 30, no. 1–2, pp. 156–168, Jan. 2024, doi: 10.1177/10775463221142663. https://doi.org/10.1177/10775463221142663
Appears in Collections

Summary

The paper investigates a nonlinear vibration mitigation strategy of a variable length pendulum subjected to a harmonic external excitation. A nonlinear absorber in a form of a tri-pendulum system is used to reduce the response of the primary pendulum. Thus, the paper investigates a non-stationary problem of nonlinear vibration mitigation of the primary pendulum using another nonlinear passive pendulum absorber. Due to genuine interest in capturing the nonlinear dynamic interaction, the paper numerically studies the performance of the primary mass and absorber, first, by constructing 2D maps in the unrestrained parametric space, which demonstrate the qualitative behavior of the system. Then, the surrogate optimization technique is used to tune the absorber’s parameters within a given bounded set of parameters’ values. The optimization is conducted based on a priori known reeling speed or acceleration/deceleration of the primary pendulum, thereby completely removing the need for acquiring a current system states essential for active feedback control. The obtained numerical results validate the proposed strategy and demonstrate high performance of the nonlinear passive absorber when it is properly tuned.

Services

Statistics